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Analysis of Lattice Boltzmann Initialization Routines
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LB simulations can be affected by the arising of initial layers due to an incon-
sistent initialization of the discrete LB populations. We present some previ-
ously proposed initialization routines built to overcome that problem; using
the asymptotic expansion technique, we show how their features can be ana-
lyzed and, in some cases, how accuracy and computational efficiency can be
improved.
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1. INTRODUCTION

One of the problems of kinetic methods simulating macroscopic equations
is about how to set correctly the initial conditions, usually given in “mac-
roscopic” form, in terms of kinetic variables. Inconsistent choices lead to
initial layers that affect numerical simulations, for example reducing the
theoretically possible accuracy of the schemes. Born with the same kinetic
philosophy, even if evolved and modified (refs. 1 or 2 for detailed over-
views), the lattice Boltzmann method (LBM) suffers of the same problem.
Some results regarding the setting up of a lattice Boltzmann simulation,
in order to avoid initial layers, will be presented. In Section 2 we intro-
duce the initial layers problem together with some basic ideas of asymp-
totic analysis, providing a simple numerical example. In Section 3, a first
initialization routine, presented in ref. 3, is discussed and analyzed, show-
ing its main features; using the asymptotic analysis, we define some mod-
ified routines, that improve the previous one in accuracy and efficiency.
Each modification step will be supported by numerical tests, based on the
presented model. Finally, a special case that allows us to get fourth order
initial pressure will be described.
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2. THE INITIAL LAYERS PROBLEM

The starting point is an initial value incompressible Navier–Stokes
problem, with periodic boundary conditions, on a two-dimensional domain
�⊂R

2:

∇ ·u = 0,

∂tu +∇p +∇ · (u ⊗u) = ν∇2u +G,

u(t =0,x) = u0(x)

(1)

for a given u0(x) :�→R
2. Our aim is to solve it using the LBM. Employ-

ing a numerical scheme whose variables have a kinetic meaning, the right
correspondence between these and the macroscopic quantities has to be
set, whenever physical conditions, regarding u and p, are involved (in
problem (1) provided by the initial velocity field u0). Incorrect coupling
can produce initial oscillatory layers, with a pure numerical meaning, in
the numerical solution.

2.1. Generalities About LBM

The lattice Boltzmann method, as a solver for the incompressible Na-
vier–Stokes equations, was originally built up from the lattice gas cellu-
lar automata (LGCA) models (see refs. 4 and 5); however, the numerical
schemes provided by the LBM can be also derived(6) from a discretization
of a finite discrete-velocity model of the Boltzmann equation

∂tfi + ci ·∇fi =Ji(f ), i =0, . . . ,N (2)

being V = {ci}i=0,...,N the finite velocity set. The variable fi(t,x) repre-
sents the particle mass density distribution moving in the direction of ci

at time t and position x; the functional Ji(f ) models the effects of colli-
sions between particles. General theory and detailed derivation of the LBE
from the LGCA and from the BE can be found, for example, in ref. 7.
To recover the incompressible Navier–Stokes equations in the continuous
limit (see refs. 7 and 8), Eq. (2) has to be discretized according to the
diffusive scaling �t =�x2. In what follows, we describe the LBM in terms
of a dimensionless lattice unities reference system, where space and time
unities are represented by grid size and time step, related by the diffusive
scaling. Furthermore, the unity of measure of mass density is fixed setting
the reference density of the flow equal to 1.

In the presented results, we will use the particular D2Q9 model, with
a nine-velocities set V={c0, . . . , c8} of two-dimensional vectors; for a more



Analysis of Lattice Boltzmann Initialization Routines 39

detailed description of such a model, and specific definitions of discrete
velocity space, equilibrium distribution and related constants, we refer to
ref. 7.

Calling h the physical grid spacing, the LB populations at time
tn = nh2 and on position xj = jh are expressed by functions f̂i (n, j): N ×
Z

2 ∩ � → [0,1]; the general iteration of the algorithm (LBM with BGK

approximation) reads then

f̂i (n+1, j+ ci )= f̂i (n, j)+ 1
τ

(f
eq
i (f̂ )− f̂i )(n, j)+ ĝi (n, j). (3)

The equilibrium distribution f eq is function of f̂ , through the den-
sity ρ̂ =∑i f̂i and the velocity û =∑i ci f̂i . We denote with Heq the equi-
librium as a function of ρ̂ and û, composed of a linear (HL(eq)) and a
quadratic (HQ(eq)) part. For the considered D2Q9 model:

H
eq
i (ρ,u)=f ∗

i

(

ρ + c−2
s ci ·u + c−4

s

2

(
|ci ·u|2 − c2

s u2
)
)

=H
L(eq)
i +H

Q(eq)
i

(4)

(the lattice sound speed cs and the weights f ∗
i depend on the model);

more general description of the equilibrium distribution and of its proper-
ties can be found, for example, in ref. 9. The last term in (3) is defined as

ĝi (n, j)=h3f ∗
i c−2

s ci ·G(tn,xj ) (5)

and takes care of the force term G (rescaled by h3 in lattice unities) in the
Navier–Stokes equations (1). The relaxation time τ is related to a dimen-
sionless viscosity through ν = c2

s (τ −1/2).

2.2. Asymptotic Analysis of Periodic LBM

Assuming that the LB solution can be written in the form

f̂i (n, j)=f
(0)
i (nh2, jh)+hf

(1)
i (nh2, jh)+h2f

(2)
i (nh2, jh)+· · · (6)

with coefficients f
(k)
i sufficiently smooth and h-independents, we can

derive explicitly the f
(k)
i by inserting (6) into (3), Taylor expanding and
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sorting the orders in h; in the periodic case, we have (see ref. 8)

f
(0)
i =f ∗

i ,

f
(1)
i =f ∗

i c−2
s ci ·u,

f
(2)
i =f ∗

i c−2
s p +H

Q(eq)
i (u,u)− τf ∗

i c−2
s (ci ·∇)ci ·u,

f
(3)
i =f ∗

i c−2
s ci ·w − τ

(

(ci ·∇)f
(2)
i + (ci ·∇)2

2
f

(1)
i + ∂tf

(1)
i

)

+ τg
(3)
i ,

(7)

where u and p solve the Navier–Stokes equations and the vector field w
is solution of an inhomogeneous Oseen-type problem. The behavior of the
numerical scheme is analyzed through a truncated expansion

F̂i =f
(0)
i +hf

(1)
i +h2f

(2)
i +h3f

(3)
i , (8)

that can predict the LB solution up to order h4. Combining Eq. (7), the
pressure can be extracted from f̂ , defining

p̂ = c2
s

∑
i f̂i −1
h2

, (9)

it expresses a 0-average pressure, related to the higher order density fluctu-
ations (see ref. 9), once removed the constant contribution of the incom-
pressible density (equal to 1 in dimensionless unities). Using the (7) and
the prediction (8), it can be shown (computing û and p̂ using F̂ instead of
f̂ , see ref. 8 for details) that û and p̂ are a second order accurate approx-
imation of the Navier–Stokes solution. Moreover, the tensor S[u] ≡ ∇u +
∇uT (viscous stress tensor divided by ν) can be approximated, up to the
second order, from the nonequilibrium part of f̂i :

Ŝ[u]=− 1
τc2

s h
2

∑

i

ci ⊗ ci

(
f̂i −f

eq
i (f̂ )

)
. (10)

2.2.1. Lattice Boltzmann Initial Conditions

Coming back to the problem (1), to set up our LB simulation, we
have to fix the initial values of the discrete populations fi , according to
the initial macroscopic fields. We present here a list of possible choices,
shortly describing them. Par. 2.2 contains some numerical example. The
simplest way consists of initializing with equilibrium values

f̂i |t=0 =H
eq
i (1, hu0) (11)
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(the velocity u0 is scaled by h in lattice unities). In view of (9), a con-
stant initial density ρ0 =1, gives rise to an initial pressure p0 =0, but, for
general u0 and G0, the initial pressure should satisfy

∇2p0 =−∇ · (∇ · (u0 ⊗u0))+∇ ·G0 (12)

(taking the divergence of the Navier–Stokes equation). To include the ini-
tial pressure, we could use an additional Poisson solver, to get an estimate
p̃ from Eq. (12) and define

f̂i |t=0 =H
eq
i (1+h2c−2

s p̃, hu0). (13)

An initialization which leads to better results, including the initial tensor
S[u0] was proposed in ref. 9; computing a numerical approximation S̃ we
can set

fi =H
eq
i (1+h2c−2

s p̃, hu0)−h2τc−2
s f ∗

i

(
ci ⊗ ci : S̃

)
. (14)

Comparing the behavior of different initializations with the results of
asymptotic analysis (7), we note that (14) sets correctly the initial values
up to the second order part fi .(2) At this point, it seems that to construct
better initializations more and more expensive routines are required; how-
ever, the approach presented in ref. 7, analyzed and improved in the pres-
ent paper, allows to achieve initialization (14) completely within the LB
framework.

2.2.2. Test Problems

Our test problems in this article are based on the periodic Taylor vor-
tex field on �= [0,1]× [0,1]:

uT V (t, x, y)= 1
2π

(− cos(2πx) sin(2πy), sin(2πx) cos(2πy)) exp (−8π2νt),

(pressure pT V (t, x, y)=− 1
16π2 (cos(4πx)+ cos(4πy)) exp (−16π2νt)),

(15)

as a solution of different problems:

• (NS): Navier–Stokes, with G =0;

• (ST): Stokes, adding a non divergence-free force G =∇pT V .
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(a) (b)

Fig. 1. Qualitative behavior of initial layers. (a) Initial layer in the error eC
p (t) in pressure in

the central point xC of the unit square (where p takes its maximum), initializing with (11);
the exact initial value of pressure is ∼ 0.012. Initial layer is of order 0. (b) Superimposed
oscillatory initial layers in the error of S[u]; maximum amplitude oscillations for the com-
ponent Sxx (in xM = (0.25,0.25)) are shown, for h = 0.05 (dashed line) and h = 0.025 (solid)
initializing with (13).

Figure 1a shows results of the LBM for the problem (NS), using the
initial values (11); the initial discrepancy in pressure produces an initial
layer, which does not vanish for h→0. With initialization (13), the initial
layer is still present in S[u] (Fig. 1b). We do not see the claimed second
order accuracy for p and S[u], because, as remarked in the end of par. 2.1,
the coefficients f

(2)
i (same order of p and S[u]) have wrong value at time

t =0, if we use initialization (11) or (13). As a consequence, the hypothesis
of smoothness of expansion coefficients is not satisfied by f

(2)
i (there is a

jump at t =0), and the prediction (8) we derived might differ from numer-
ical results. Initial layers in the order h2 are removed using (14).

3. LB INITIALIZATION ROUTINES

The following algorithm has been proposed in ref. 3 to initialize LB
algorithm according to (14).

It has the same structure as the classical LBM; only, in the collision
step, the velocity is kept fixed and equal to u0 in the equilibrium function.

Algorithm 1.

ρ0 =1
do while ||ρ(n+1, ·)−ρ(n, ·)||>ε (fixed by tolerance criterion)

collision: f̂ c
i (n, j)= f̂i (n, j)+ 1

τ
(H

eq
i (ρ(n, j), hu0(j))− f̂i (n, j))+ ĝi (0, j)

advection: f̂i (n+1, j+ ci )= f̂ c
i (n, j)

ρ(n+1, ·)=∑i f̂i (n+1, ·)
end
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3.1. Asymptotic Analysis

To see how the algorithm acts on the populations, we apply an expan-
sion of the form (6) to the previous procedure. Since in what follows the
time t is not the “real” time (the algorithm is used only to initialize the
populations, keeping the initial velocity and the initial force fixed), we will
call it pseudotime, even if we indicate it with the letter t . The frozen quan-
tities are denoted with subscript 0, like u0 or G0.

From definition (9), an analogous expansion can be derived for the
pressure, which reads

p̂ =p +hp(3) +h2p(4) +h3p(5) +· · · (16)

The expressions of the coefficients f
(k)
i (up to the third order, compare

with (7)) are

f
(0)
i =f ∗

i ,

f
(1)
i =f ∗

i c−2
s ci ·u0,

f (2) =f ∗
i c−2

s p +H
Q(eq)
i (u0,u0)− τf ∗

i c−2
s (ci ·∇)ci ·u0

f
(3)
i =f ∗

i c−2
s p(3) − τ(ci ·∇)f

(2)
i − τ

(ci ·∇)2

2
f

(1)
i + τg

(3)

0,i

(17)

with p satisfying

∇p +∇ · (u0 ⊗u0)=ν∇2u0 +G0 − 1
τ

w

c−2
s ∂tp +∇ ·w + 1

2
(∇2p +∇ · (u0 ⊗u0))=0

. (18)

The field w, defined as the first order moment of the coefficient f
(3)
i ,

can be recovered from the first equation and inserted into the second,
obtaining

∂tp =ν(∇2p +∇ · (∇ · (u0 ⊗u0))−∇ ·G0)+ c2
s

2
∇ ·G0 (19)

with initial condition p|t=0 =0. Using an analogous procedure, we obtain
for p(3) the PDE

∂tp
(3) =ν∇2p(3) (20)

with p(3)|t=0 =0, that has solution p(3) ≡0.



44 Caiazzo

3.2. A LB Poisson Solver

Now we analyze more in detail Eq. (19). If ∇ · G0 = 0, it shows that,
at the steady state (in pseudotime), p solves the Poisson equation (12).
Hence, we can extract a second order accurate pressure, since (as a con-
sequence of (20), using the expansion (16)), p̂ −p =O(h2). On the other
hand, the procedure does not work if the force has non zero divergence,
because equation (19) is then different from (12). Figure 2a (right) exem-
plifies the problem. Looking at the pressure during the initialization algo-
rithm for a (ST) problem (where an additional nondivergence-free force is
present) we see an error in the asymptotic value increasing like ν−1 (this
relationship is also explained by Eq. (19)). Fixing the viscosity and refin-
ing the grid (Fig. 2b), the error in the initial pressure (solution of (12)) is
not reduced (slope ∼0 in the double logarithmic plot); the procedure gives
an inconsistent pressure.

To cure this anomaly we modify the collision step, replacing ĝi with

g∇
i ≡h3c−2

s f ∗
i ci ·G +h4f ∗

i

∇ ·G
2

, (21)

which produces a new term in (19) able to remove the undesired source.
Results of this modified routine, shown in Fig. 2b, confirm that the cor-
rected force g∇

i allows to recover a second order accurate initial pressure
(slope ∼2) solving Eq. (12) only by using LB-type iterations.

Other aspects of (modified) Algorithm 1 follow from the analysis per-
formed in par. 3.1. Actually, it is more than a LB Poisson solver, since
it does not even require an approximation of ∇u0 to set f

(2)
i as initial-

(a) (b)

Fig. 2. (a) Algorithm 1 applied to vortex solution (20 × 20 grid), for viscosity ν1 = 0.006
(bold line), ν2 = 5ν1 = 0.030 (solid), ν3 = 5ν2 = 0.15 (dashed) (the arrow in the plots shows
the increasing viscosity). Left: error eC

p (t) of central point pressure in logarithmic pseudotime
during initialization for (NS) problem. Right: (ST) problem (with additional non divergence-
free force); the error is increasing like ν−1. (b) Double logarithmic plot of maximum error in
initial pressure vs. grid size in (ST), with (◦) and without (×) the corrected force term g∇ .
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ization (14) does. However, we observe also that the pseudotime steps
needed to reach the steady state of Eq. (19) are a function (∼ 1/ν) of
viscosity, i.e. of τ (it can be seen in Fig. 2a, showing the error in pres-
sure approaching a steady value). Therefore, once guaranteed the accuracy
in pressure for a general force field, our next aim is to see whether is it
possible to reduce the computational effort to get it.

3.3. Accelerated Initialization Routines

We focus on a periodic box without boundaries. The idea is the fol-
lowing: the Poisson equation (12) does not depend on ν; hence, to have
a faster procedure, it should be possible to run the algorithm with a
higher, faster, viscosity (i.e. using a different τ ). This allows the pressure
to get closer to its limit in less pseudotime steps; unfortunately, the simple
increasing of viscosity leads to a wrong initial tensor S[u], in which we will
still see a zeroth order initial layer (Figs. 3-right and 4a), due to a wrong
initialization of the τ -depending term in f

(2)
i . Looking at the definition of

the coefficients (17), we can derive a recipe to correct the initial popula-
tions in such a way to remove completely the error in f

(2)
i , even using a

different value of τ . Practically, calling τ̃ the new relaxation time and r

the ratio τ/τ̃ , we isolate (up to order h) the term we are interested in, sub-
tracting from the output (of the accelerated routine) f̂ τ̃

i the previous order
terms, reconstruct “by hand” the correct initial second order,

f̄
(2)
i = (1− r)

(
f ∗

i c−2
s p̂ +H

Q(eq)
i (u0,u0)

)
+ r

(
f τ̃

i −f ∗
i −hf ∗

i c−2
s ci ·u0

h2

)

(22)

and define the initial values

f̄ τ̃
i =f ∗

i +hf
(1)
i +h2f̄

(2)
i = (1− r)H

eq
i (1+h2c−2

s p̂, hu0)+ rf̂ τ̃
i . (23)

Algorithm 2.

Given initial data u0 and force G0
compute ∇ ·G0 (at least first order accurately), g∇
run algorithm 1 with τ1
compute pressure p and equilibrium from p and u0
initialize LBM using (23)
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Fig. 3. Same simulation as in Fig.1, the error in p and Sxx are now shown after the modi-
fied viscosity initialization. It reduces the order of initial layer in pressure (left) but not in the
tensor S[u] (right); dashed line: 20×20 grid, solid line: 40×40 grid.

(a) (b)

Fig. 4. (a) Double logarithmic plot of maximum error in initial pressure (left) and S[u]
(right) for (NS), versus grid size (viscosity ∼ 3 · 10−2); the curves are obtained with original-
viscosity routine (×), Algorithm 1 run with τ = 1 (◦), and accelerated routine, inclusive of
correction (
). (b) Error in pressure versus grid size for original (×) and accelerated (◦) ini-
tialization applied to (ST).

Using Eqs. (22) and (23), the difference between f̄ τ̃ and the correct
initial population f can be explicitely written down as

f − f̄ τ̃ =h3
(
−rf (3),τ̃ +f (3)

)
+O(h4). (24)

This accelerated initialization procedure will then remove all the incon-
sistencies regarding initial conditions from the second order populations,
reducing the computational time needed to initialize them. The following
numerical tests (Fig. 4) compare results of the original initialization rou-
tine, with the accelerated one. The original viscosity is ∼ 0.03, with τ =
0.59; as a faster relaxation time we used τ̃ =1, that allows also to simplify
the implementation of the LB collision step. The tolerance criterion in
Algorithm 2 is based on the difference between the pressure in two succes-
sive pseudotime iterations (related to an approximated ∂tp) and the gain in
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CPU time is about 65%. Initial layers in pressure and viscous stress tensor
have been compared; we get first order accuracy for p̂ and second order
(only after correction (23)) for Ŝ, even if, for pressure, after the accelerated
procedure the initial layer amplitude may be slightly bigger. It happens
mainly because we modify, and do not correct, the f

(3)
i ; we can explicitly

write down the modification occurring in the third order coefficients (as
given in (17)) running Algorithm 2, using the evaluation of error (24):

f
(3),τ
i − f̄

(3),τ̃
i =E

(3)
i = (τ − τ̃ )τc2

s f
∗
i (ci ·∇)2(ci ·u0). (25)

This part is only responsible of the increasing of the amplitude (Fig. 4a)
of the initial layer in pressure. This arises even using the original viscosity
routine, because the expressions of f

(3),τ
i differ from the exact initial val-

ues given in (7); in particular, a term involving ∂tu|t=0 is missed, affecting
our prediction F̂i from order h3 (as explained in par. 2.1). Note that in
the linear problem, original and accelerated routines lead to similar results,
because the difference (25) vanishes, since it contains only quadratic terms
(Fig. 4b).

Summarizing the theoretical and numerical results presented so far,
we started analyzing an existing initialization algorithm from which a
modified collision routine, able to initialize correctly LBM up to second
order for a general force field, has been defined; for a special class of peri-
odic boundary problems, we have proposed a faster viscosity routine char-
acterized by a viscosity-independent CPU-time needed.

3.4. Special Viscosity

Performing a further step of asymptotic analysis, we can write the
equation for the coefficient p(4) of expansion (16):

A(τ)∂tp
(4) +B(τ)∂2

t p =∇2p(4) + 1
τ

φ(τ)F(u0,G0)+γ (τ)∇2(∇ ·G0) (26)

with initial conditions p(4) = 0. The operator F involves fourth and sixth
order derivatives of the initial data. The function φ(τ) is a second order

polynomial with two real roots, τ ∗± = 1
2

± 1√
6

. This means that if ∇ ·G0 =0,

with the special value τ ∗+ ∼0.9089, p(4) vanishes at the steady state, giving
a fourth order initial pressure (the coefficient p(5) behaves like the previ-
ous odd term p(3), see ref. 8) (see Fig. 5). Note, again, that the third order
error has not been removed (it is just “invisible” in pressure) and that the
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Fig. 5. Double logarithmic plot of maximum error in the initial pressure after initialization
routine, for τ = τ ∗+ (◦) and τ =1 (×).

fourth order pressure will, in general, become of second order once start-
ing the actual LBE iteration.

ACKNOWLEDGMENTS

I would like to thank Prof. Michael Junk and Dr. Li-Shi Luo for the
useful discussions we had.

REFERENCES

1. D. A. Wolf-Gladrow, Lattice Gas Cellular Automata and Lattice Boltzmann Models
(Springer, Berlin, 2000).

2. D. Yu, R. Mei, L.-S. Luo, and W. Shyy, Viscous flow computations with the method of
lattice Boltzmann equation, Prog. Aerospace Sci. 39(5):329–367 (2003).

3. R. Mei, L.-S. Luo, and D. d’Humieres. Consistent Initial Conditions for Lattice Boltz-
mann Simulations. To appear on Computers and Fluids, 2005.

4. U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice-gas automata for the Navier–Stokes
equation, Phys. Rev. Lett. 56:1505–1508 (1986).

5. G. R.McNamara, and G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas
automata, Phys. Rev. Lett. 61:2332–2335 (1988).

6. X. He, and L.-S. Luo. Theory of the lattice Boltzmann method: From the Boltzmann
equation to the lattice Boltzmann equation, Phys. Rev. E 56:6811–6817 (1997).

7. S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford Univer-
sity Press, Oxford 2001).

8. M. Junk, A. Klar, L.-S. Luo. Theory of the lattice-Boltzmann method: Mathematical
analysis of the lattice Boltzmann equation, to appear in J. Comp. Phys., 2005.

9. P. A. Skordos, Initial and boundary conditions for the lattice Boltzmann method, Phys.
Rev. E 48:4823–4842 (1993).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


